报告题目:Difference ``abc" theorem for entire functions and Difference analogue of truncated version of Nevanlinna second main theorem
报告人:温智涛教授
报告时间:2024年11月8日 15:00-16:00
主持人:李叶舟教授
地点:腾讯会议 632-109-779
报告摘要:
In this paper, we focus on the difference analogue of the Stothers-Mason theorem for entire functions of order less than 1, which can be seen as difference $abc$ theorem for entire functions. We also obtain the difference analogue of truncated version of Nevanlinna second main theorem which reveals that a subnormal meromorphic function $f(z)$ such that $\Delta f(z)\not\equiv 0$ cannot have too many points with long height in the complex plane. Both theorems depend on new definitions of height of shifting poles and shifting zeros of a given meromorphic function in a domain.
报告人介绍:报告人温智涛,汕头大学数学系教授,博士生导师。2013年博士毕业于东芬兰大学,研究方向为复分析。先后在香港城市大学做博士后,在太原理工大学,汕头大学任教。现阶段主要研究复平面上的差分Painleve方程,以及指数多项式的零点分布问题。主要结果接受发表于Trans. Amer. Math. Soc.,Israel J. Math. , J. Differential Equ., Bull. Lond. Math. Soc. ,Journal d’Analyse Mathématique等国际期刊。主持国家自然科学基金青年项目1项,面上项目2项。